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In this part…
 ✓ See how statistical tests are based on the assumption of nor-

mality, and review several techniques available for testing 
whether a particular set of data is normally distributed.

 ✓ Check out several types of problems that may arise when the 
assumptions of regression analysis are not met; two problems 
that can plague simple regression analysis are autocorrelation 
and heteroscedasticity.



Chapter 18

Ten Common Errors That Arise  
in Statistical Analysis

In This Chapter
▶ Understanding logical fallacies that may arise in statistical analysis
▶ Avoiding drawing incorrect conclusions from statistical results
▶ Understanding the types of errors that can result in regression analysis
▶ Understanding forecasting errors
▶ Realizing how information may be presented incorrectly

I 
n the For Dummies Part of Tens fashion, this chapter discusses ten ways 
people may draw incorrect conclusions from statistical tests. These 

erroneous conclusions can result from several sources, including incorrect 
assumptions, misunderstanding the meaning of a statistical test, use of  
inappropriate data, and measurement error.

Any one of these mistakes can lead to erroneous conclusions being drawn, 
no matter how sophisticated the techniques being used. Part of the art of 
statistics is knowing which techniques to use under different circumstances 
and how to correctly interpret them. The following sections discuss different 
types of errors that may result from the incorrect application of statistical 
techniques.

Designing Misleading Graphs
Graphs may give a misleading picture of a sample or population if they’re not 
well designed. For example, if you use scales on a graph that are substantially 
different from the values in the data you’re analyzing, you may end up with a 
highly distorted view of the data.
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Figures 18-1 and 18-2 represent the same data with two different histograms 
(see Chapter 2 for an overview of histograms).

In this example, the data consist of the distribution of a bank’s branches  
scattered throughout the four regions of the United States — North, South, 
East, and West.

Region Branches
North 1,213
South 1,415
East 1,199
West 1,098

In Figure 18-1, the values on the vertical axis are separated by only 20 
branches.

 

Figure 18-1: 
Distribution 

of bank 
branches by 
geographical  

region.
 

With such closely spaced values on the vertical axis, the differences between 
the number of branches in each region appear to be very large. But, in fact, 
the difference between the largest number and the smallest number is only 
317 (about 29 percent).
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In Figure 18-2, the spacing of the values on the vertical axis is much wider, 
separated by 500 branches, making it appear that the differences between 
the numbers of branches are quite minimal.

 

Figure 18-2: 
Another 

look at the 
distribution 

of bank 
branches by 
geographical  

region.
 

These figures show how easy it is to give a distorted view of data through 
poor design.

Drawing the Wrong Conclusion  
from a Confidence Interval

When constructing a confidence interval, you can easily draw the wrong  
conclusion from the results. (Confidence intervals are covered in Chapter 11.) 
For example, suppose that a university constructs a 95 percent confidence 
interval for the mean GPA of its students. The sample mean is estimated to be 
3.10; the 95 percent confidence interval is (2.95, 3.25).

It’s tempting to conclude that the probability of the population mean being 
in the interval (2.95, 3.25) is 95 percent. Instead, this result indicates that for 
every confidence interval that’s constructed from this population, in 95 cases 
out of 100, the confidence interval will contain the true population mean.



356 Part V: The Part of Tens 

Misinterpreting the Results  
of a Hypothesis Test

One potential problem that may arise in hypothesis testing is confusing what 
it means when the null hypothesis isn’t rejected. It’s important to distinguish 
between accepting the null hypothesis and failing to reject the null hypothesis.

For example, suppose that a jury trial is in progress. For this hypothesis test, 
the following null and alternative hypotheses are used:

 ✓ Null hypothesis (H0): The defendant is innocent.

 ✓ Alternative hypothesis (H1): The defendant is guilty.

If the null hypothesis is rejected, the defendant is guilty. If the null hypothesis 
isn’t rejected, the defendant isn’t necessarily innocent. There’s simply  
insufficient evidence to show that he’s guilty. There’s a world of difference 
between being “innocent” and “not guilty!”

The proper procedure in a hypothesis test is to conclude that a null hypothesis 
fails to be rejected unless strong contrary evidence exists against it. The  
conclusion should never be that the null hypothesis is accepted.

Placing Too Much Confidence in the 
Coefficient of Determination (R2)

With regression analysis, researchers sometimes use the coefficient of  
determination to figure out whether one model “fits” the data better than 
another. The coefficient of determination assumes a value between 0 and 1;  
the closer it is to 1, presumably the better the regression model explains 
the relationship between X and Y. One of the drawbacks to the coefficient of 
determination is that it can be very close to 1 even for a model that makes no 
economic sense, such as a regression between two unrelated variables.

Another issue that arises with the coefficient of determination is that it 
automatically increases when new independent variables are added to a 
regression equation, even if the variables don’t contribute any additional 
explanatory power to the regression. For this reason, the adjusted coefficient 
of determination is the preferred measure with multiple regression analysis 
because it increases only when newly added independent variables add at 
least some explanatory power.
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Assuming Normality
Many statistical tests are based on the assumption of normality. For example, 
residuals are assumed to be normally distributed in regression analysis, 
enabling confidence intervals to be constructed for the slope coefficients.

For example, it’s often assumed that the returns to stocks are normally  
distributed. In fact, although they’re close to being normally distributed, they 
exhibit a property known as fat tails, where the actual probability of extreme 
outcomes (large positive returns and large negative returns) is greater than 
under the normal distribution. The assumption of normality causes investors 
to underestimate the true riskiness of their portfolios.

Several techniques are available for testing whether a particular set of data 
is normally distributed. For example, a Q-Q plot can be used to visually 
inspect data for normality. (You can read more about QQ plots at http://
en.wikipedia.org/wiki/Q-Q_plot.)

A formal hypothesis test of normality is available; it’s known as the Jarque-
Bera test. (You can read more about the Jarque-Bera test at http://
en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test.)

These types of techniques should be used before jumping to any conclusions 
about normality.

Thinking Correlation Implies Causality
One common error in statistical analysis is to assume that if two variables 
are correlated, one causes the other. Correlation simply indicates the tendency 
of two variables to move in the same or opposite directions. For example, 
new car sales tend to rise at the same time as new home sales, but no one 
would suggest that new home sales cause new car sales. (Equivalently, no 
one would suggest that new car sales are caused by new home sales.) These 
variables are positively correlated because they’re both directly influenced 
by the economy. During an expansion, both new car sales and new home 
sales rise; during a recession, both fall.

One particularly well-known example of the dangers of assuming that  
correlation implies causality comes from the 19th century British economist 
William Stanley Jevons. Jevons was interested in applying statistical methods 
to the measurement of business cycles. He noticed that the business cycle 
had a tendency to follow changes in sunspot activity. Sunspots went through 
a cycle that lasted for about 11 years, while business cycles tended to last for 

http://en.wikipedia.org/wiki/Q-Q_plot
http://en.wikipedia.org/wiki/Q-Q_plot
http://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
http://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
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just under 11 years. From his studies, Jevons concluded that the sunspots  
were actually responsible for the business cycle. (It’s not as crazy as it 
sounds; sunspots can lead to changes in weather patterns, which would have 
a huge influence on the business cycles of a primarily agriculture-based  
economy. In spite of this, sunspots do not directly cause changes in the  
business cycle.)

Drawing Conclusions from a Regression 
Equation when the Data do not  
Follow the Assumptions

Several types of problems may arise when the assumptions of regression 
analysis are not met. (Simple regression analysis is covered in Chapter 15; 
multiple regression analysis is covered in Chapter 16.) Two problems that 
can plague simple regression analysis are known as autocorrelation and  
heteroscedasticity.

Autocorrelation occurs when the error terms are correlated with each  
other (they are related to each other). It violates the assumption of  
independence. Two independent variables have a correlation of 0 between 
them. Autocorrelated error terms can cause understating the standard errors 
of the regression coefficients, thus increasing the risk that coefficients are 
incorrectly found to be statistically significant (for example, different from 
zero).

Heteroscedasticity occurs when the error terms don’t have a constant  
variance. This problem can cause understating the standard errors of the 
regression coefficients, increasing the risk that coefficients are incorrectly 
found to be statistically significant (for example, different from zero).

When these problems are present, it is important to correct for them;  
otherwise, all results will be deceptive.
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Including Correlated Variables in  
a Multiple Regression Equation

One potential difficulty with multiple regression analysis is multicollinearity. 
Multicollinearity occurs when two or more of the independent variables are 
highly correlated with each other, causing the correlated variables to have 
large standard errors, so they appear to be statistically insignificant even if 
they’re not. (In other words, there’s a risk that independent variables will be 
removed from the regression equation that should be included.)

Multicollinearity is unique to multiple regression because it has multiple 
independent variables (simple regression has only one independent variable 
so that multicollinearity cannot occur).

A statistic known as the variance inflation factor (VIF) may be used to check 
for multicollinearity. As a rule of thumb, if the VIF is 10 or more, it’s a sign 
that multicollinearity is present. (You can find more information about the 
variance inflation factor at http://en.wikipedia.org/wiki/Variance_
inflation_factor.) If multicollinearity is present, one of the highly  
correlated variables should be removed from the regression equation.

Placing Too Much Confidence  
in Forecasts

Many techniques are used to forecast future values of economic variables, 
such as stock prices, GDP growth, corporate sales, the demand for new  
products, and so on. Many of these techniques are highly sophisticated, 
which may give the false impression that they’re extremely accurate. One 
major difficulty with forecasting techniques is that they’re based on historical 
data that may not be repeated in the future. For example, if an economist 
is attempting to forecast future interest rates, his results don’t capture any 
structural changes that occur in the economy during the forecast period, 
such as the selection of a new chairman of the Federal Reserve Board. In this 
case, future interest rates are unlikely to behave in exactly the same way that 
they have in the past, and the results of the forecast are inaccurate.

http://en.wikipedia.org/wiki/Variance_inflation_factor
http://en.wikipedia.org/wiki/Variance_inflation_factor
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Two types of errors that may arise in forecasting are bias error and random 
error. Bias error occurs when a forecast is consistently greater than or less 
than actual values of a variable. Random error refers to unpredictable factors 
that can distort the results of a factor. These include earthquakes, strikes, 
sudden increases in oil prices, political turmoil, and so on.

With so much uncertainty surrounding forecasts, it would be a mistake to 
assume a high degree of accuracy.

Using the Wrong Distribution
In many situations, a variable is assumed to follow a specific probability  
distribution. For example, a computer chip manufacturer may assume that 
the number of defective chips produced by a specific process follows the 
binomial distribution. (The binomial distribution is covered in Chapter 8.) 
The binomial distribution is based on several assumptions, one of which is 
that the trials are independent of each other. Suppose that in this process, 
one defective chip is highly likely to be followed by another defective chip 
(for example, repairs to the process are needed). In this case, the trials 
(chips) aren’t truly independent of each other. As a result, any conclusions 
drawn about the distribution of defective chips are likely inaccurate. The 
manufacturer needs to find another distribution that more accurately reflects 
the distribution of the chips.



Chapter 19

Ten Key Categories of Formulas  
for Business Statistics

In This Chapter
▶ Keeping the most important statistical concepts fresh in your memory
▶ Seeing how key statistical formulas are related

T 
his chapter provides a brief overview of many key formulas encountered 
in the text. This provides a handy reference guide so that you can 

quickly find the formulas that you need without having to search through the 
entire book.

Summary Measures of a  
Population or a Sample

Summary measures are used to describe key properties of a sample or a  
population. These measures can be classified as:

 ✓ Measures of central tendency identify the center of a data set. Three 
of the most widely used measures of central tendency are the mean, 
median, and mode.

	 •	The	mean is another word for average.

	 •	The	median is a value that divides a sample or a population in half: 
Half of the elements in the data are below the median, and half of 
the elements in the data are above the median.

	 •	The	mode is the most frequently occurring value in a sample or a 
population.
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 ✓ Measures of dispersion are used to measure how spread out, or disperse, 
are the values of a sample or a population. Some of the most important 
measures of dispersion are the variance, standard deviation, percentiles, 
quartiles, and the interquartile range (IQR).

	 •	Variance: The variance is calculated as the size of the average 
squared difference between the elements of a data set (a sample or 
a population) and the mean of the data set. The greater is the  
variance, the further the elements of the data set tend to be from 
the mean.

	 •	Standard deviation: The square root of the variance. The standard 
deviation is more convenient to use than the variance due to the 
units in which these measures are calculated. As an example, if a 
sample consists of dollar prices, the sample standard deviation is 
measured in dollars, while the sample variance is measured in  
dollars squared, which is difficult to make sense of.

	 •	Percentiles: Percentiles split a data set into 100 equal parts, each 
consisting of 1 percent of the values in the data set. For example, 
the 80th percentile represents the value in a sample or a population 
where 20 percent of the observations are above this value, and  
80 percent are below this value.

	 •	Quartiles: Special types of percentiles, where the first quartile (Q1) 
is the 25th percentile, the second quartile (Q2) is the 50th percentile, 
and the third quartile (Q3) is the 75th percentile.

	 •	Interquartile range (IQR): The difference between the third and 
first quartile.

 ✓ Measures of association provide a measure of how closely two samples 
or populations are related to each other. The two most important  
measures of association are:

	 •	Covariance is a measure of the tendency for two variables to move 
in the same direction or in opposite directions. If two variables 
increase or decrease under the same circumstances, the covariance 
between them is positive. If two variables move in opposite  
directions, the covariance between them is negative. If two variables 
are unrelated to each other, the covariance between them is zero 
(or very close to zero).

	 •	Correlation is closely related to covariance; it has more convenient 
properties than covariance. For example, correlation always 
assumes a value between -1 and 1, whereas covariance has no 
lower or upper limits. As a result, it is easier to tell if the  
relationship between two variables is very strong or very weak 
with correlation than with covariance.
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Probability
You use probability theory to model a large number of events in business 
applications. Probability theory is based on set algebra, and the important 
rules are

 ✓ Addition rule: The formula for the Addition rule is:

  

The addition rule is designed to compute the probability of a union of two 
sets. In general, the union of sets A and B contains all the elements that are in 
set A, set B or both. 

 ✓ Multiplication rule: The Multiplication rule has two forms:

  

  

The multiplication rule is designed to compute the probability of the  
intersection of two sets. In general, the intersection of sets A and B contains 
all the elements that are in both set A and set B. 

 ✓ Complement rule: The Complement rule has two forms:

  

  

The complement rule tells you the probability of all elements that are not in 
a set. For example, suppose set A contains all the black cards in a standard 
deck; the complement of A (written as AC) is a set containing all the red 
cards. The probability of AC can be computed with the complement rule. 

Discrete Probability Distributions
A discrete probability distribution occurs where only a finite number of  
different outcomes may occur. The properties of a probability distribution 
may be summarized by a set of moments. Moments are numerical values 
that describe key properties of a probability distribution. Some of the most 
important are as follows:
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 ✓ The expected value is the first moment of a probability distribution. 
You compute it as

  

The expected value tells you the average value of X.

 ✓ The variance is the second moment of a probability distribution. You 
compute it as

  

  σ2 represents the variance of X.

The variance tells you how much the different possible values of X are  
scattered around the expected value.

 ✓ The standard deviation isn’t a separate moment; it’s the square root of 
the variance. The formula is

  

The standard deviation is preferred to the variance since the variance is  
measured in squared units, which are difficult to interpret.

Following are three of the most widely used discrete probability distributions 
in business applications:

 ✓ Binomial distribution: The binomial distribution is defined for a random 
process consisting of a series of trials in which only two different outcomes 
can occur on each trial. It enables you to determine the probability of a 
specified number of events occurring during a series of trials.

  

 ✓ Geometric distribution: The geometric distribution is related to the 
binomial distribution; it is used to determine how many trials are 
needed before a specified event occurs. 

  

 ✓ Poisson distribution: The Poisson distribution is used to determine  
the probability that a specified number of events will occur during an 
interval of time.
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Continuous Probability Distributions
A continuous probability distribution is defined for an infinite number of  
possible values. The uniform distribution and the normal distribution are 
two of the most widely used continuous probability distributions in business 
applications.

 ✓ The uniform distribution is defined over an interval (a, b); in other 
words, all values between a and b. For example, the uniform distribution 
may be defined over the interval (1, 10). This means that the distribution 
is defined for all values between 1 and 10. You can compute probabilities 
for the uniform distribution with the following equation, known as a 
probability density function (pdf):

  

 ✓ The normal distribution is by far the most important continuous  
probability distribution for business applications. You can get  
probabilities for this distribution from normal tables, specialized  
calculators, and spreadsheet programs. The normal distribution is 
defined by the following probability density function:

  

The normal distribution is important because many business situations may 
be accurately modeled with the normal distribution. For example, returns to 
stock prices are often assumed to follow the normal distribution.

Sampling Distributions
A sampling distribution is a special type of probability distribution defined 
for sample statistics. A sample statistic is a measure that describes the  
properties of a sample. Three of the most important sample statistics are the 
sample mean ( ), sample variance (s2), and sample standard deviation (s). 
For more details about sampling distributions, see Chapter 10.

Based on a key result in statistics known as the central limit theorem, the 
sampling distribution of the sample mean is normal as long as the underlying 
population is normal or if you choose sample sizes of at least 30 from the 
population. To compute a probability for the sample mean, convert it into a 
standard normal random variable as follows:
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 ✓  is the sample mean

 ✓  is the mean of the sampling distribution of  

 ✓  is the standard deviation (also known as the standard error) of the 
sampling distribution of 

Confidence Intervals for  
the Population Mean

A confidence interval is a range of numbers that is expected to contain the 
true value of the population mean with a specified probability.

The formula you use to compute a confidence interval for the population 
mean depends on whether you know the population standard deviation (σ).

If you know the population standard deviation, the appropriate formula is

   is the sample mean

   is a quantile which represents the location of the right tail under the 
standard normal distribution with area α/2

  σ is the population standard deviation

  n is the sample size

  α is the level of significance

If you don’t know the population standard deviation, you replace the  
population standard deviation with the sample standard deviation:

 ✓  is a quantile (critical value) which represents the location of the 
right tail of the t-distribution with n-1 degrees of freedom with an area  
of α/2

 ✓ s is the sample standard deviation
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Testing Hypotheses about  
Population Means

Testing hypotheses about population means is a multi-step process, consisting 
of the null and alternative hypotheses, the level of significance, test statistic, 
critical value(s), and decision. (I walk you through all the steps of hypothesis 
testing in Chapter 12.)

You write the null hypothesis for testing the value of a single population 
mean as

H0: μ = μ0

where H0 stands for the null hypotheses, μ is the true population mean and μ0 
is the hypothesized value of the population, or the value that you think is true.

The alternative hypothesis can assume one of three forms:

H1: μ > μ0 (known as a “right-tailed” test)

H1: μ < μ0 (known as a “left-tailed” test)

H1: μ ≠ μ0 (known as a “two-tailed” test)

To test a hypothesis, you must specify a level of significance — the probability 
of rejecting the null hypothesis when it’s actually true.

When you’re testing hypotheses about the population mean, the test statistic 
and the critical value (or values) depend on the size of the sample drawn 
from the population and whether you know the population standard deviation.

 ✓ For a small sample (less than 30), the appropriate test statistic is

 ✓  is the sample mean

 ✓ μ0 is the hypothesized value of the population mean

 ✓ s is the sample standard deviation

 ✓ n is the sample size

 ✓ For a large sample (30 or more) when you know the population standard 
deviation (σ), the appropriate test statistic is
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 ✓ For a large sample when you don’t know the population standard  
deviation, use the sample standard deviation (s) instead:

 For small samples (the sample size is less than 30), the critical values are 
drawn from the t-distribution with n – 1 degrees of freedom. For large samples, 
the critical values are drawn from the standard normal distribution.

To test hypotheses about the equality of two population means, the test 
statistic and critical values are different, but the basic process remains 
unchanged. In this case, though, you write the null hypothesis as H0: μ1 = μ2, 
where μ1 is the mean of population 1, and μ2 is the mean of population 2.

 ✓ For independent samples with equal population variances, the test  
statistic is

  

  s2
p is the estimated common “pooled” variance of the two populations — 

which you calculate with this formula:

  

  The critical values of independent samples with equal population variances 
are based on the t-distribution with n1 + n2 – 2 degrees of freedom.

 ✓ If the independent samples are drawn from populations that don’t have 
the same variance, the test statistic depends on the sizes of the two 
samples. If at least one sample is small, the test statistic becomes

  

  Here, the critical values are also drawn from the t-distribution, but the 
degrees of freedom calculation is much more complex:
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 ✓ If the independent samples are drawn from populations that don’t have 
the same variance and both samples are large, the test statistic becomes

  

  In this case, the critical values are drawn from the standard normal  
distribution.

 ✓ If the two samples aren’t independent, they’re known as paired samples. 
The test statistic is then based on the differences between the samples:

  

   is the average difference between paired samples, and sd is the standard 
deviation of the sample differences.

  In this case, the critical values are taken from the t-distribution with  
n – 1 degree of freedom.

Testing Hypotheses about  
Population Variances

Testing hypotheses about population variances follows the same six-step 
procedure as testing hypotheses about population means (see previous  
section and Chapter 12 for details).

For testing hypotheses about the variance of a single population, the  
appropriate test statistic is

 ✓ n is the sample size)

 ✓ s2 is the sample variance

 ✓ σ0
2 is the hypothesized value of the population variance

The critical values are drawn from the chi-square distribution with n – 1 
degree of freedom.
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For testing hypotheses about the equality of variances of two populations, 
the appropriate test statistic is

s1
2 is the variance of the sample drawn from population 1; s2

2 is the variance of 
the sample drawn from population 2. The populations are assigned a number 
of 1 or 2 in such a way as to ensure that s1

2 is greater than or equal to s2
2.

The critical values are drawn from the F-distribution, which has two different 
types of degrees of freedom: numerator and denominator. In this case, the 
numerator degrees of freedom equal n1 – 1, and the denominator degrees of 
freedom equal n2 – 1.

Using Regression Analysis
You use regression analysis to estimate the relationship between a dependent 
variable (Y) and one or more independent variables (Xs).

 ✓ Use simple regression analysis to estimate the relationship between a 
dependent variable (Y) and one independent variable (X).

 ✓ Use multiple regression analysis to estimate the relationship between a 
dependent variable (Y) and two or more independent variables (Xs).

Several tests allow you to validate the results of a regression equation. For 
example, if the coefficient of an independent variable equals 0, the variable 
doesn’t belong in the regression. A hypothesis test helps you determine 
whether this coefficient equals 0. In the case of multiple regression, it may 
make sense to test the hypothesis that the slope coefficients all equal 0; if 
this hypothesis can’t be rejected, then the regression equation is completely 
invalid.

It’s also important to ensure that the underlying assumptions of regression 
analysis aren’t being violated. Three potential problems can result if the 
assumptions aren’t true:

 ✓ Autocorrelation indicates that the error terms aren’t independent of 
each other.

 ✓ Heteroscedasticity indicates that the error terms don’t have a common 
variance.

 ✓ Multicollinearity indicates that two or more of the independent variables 
are highly correlated with each other. (This can only affect the results 
with multiple regression.)
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Forecasting Techniques
There are many different forecasting techniques that can be used to  
predict the future values of variables, such as stock prices, gas prices, and 
so on. (Forecasting techniques are covered in Chapter 17.)

One widely used technique for forecasting is known as time series regression 
analysis. A time series is a set of values for a single variable collected over a 
period of time. For example, the daily prices of Apple stock from 2010 to 2013 
would constitute a time series.

As an example, the following regression equation may be used to forecast the 
trend of a time series. (The trend shows how a time series grows over time.)

The trend may take several different forms, including

 ✓ No trend

 ✓ Linear trend

 ✓ Quadratic trend

 ✓ Higher-order trend

Suppose that a time series is collected for the average price of gasoline in 
New York State over the past ten years. If the time series does not have a 
trend, this would indicate that gas prices do not grow at a steady rate over 
time. If the time series has a linear trend, then gasoline prices grow at a  
constant rate over time. If the time series has a quadratic or higher-order 
trend, then gasoline prices grow at a rate that changes over time. 

Other techniques to forecast a time series include simple moving averages, 
centered moving averages, and exponentially weighted moving averages. 
Simple and centered moving averages “smooth” out the values of a time 
series to produce an estimate of the trend of the series. An exponentially 
weighted moving average is a more sophisticated version of these techniques 
and is designed to place less weight on older observations to reflect their 
diminishing relevance.



372 Part V: The Part of Tens 


